MATHCOUNTS TOOLBOX

Facts, Formulas and Tricks
I. PRIME NUMBERS from 1 through 100 ($\mathbf{1}$ is not prime!)

2		3		5		7
11		13		17		19
		23		29		
		31		37		
	41		43		47	
		53		59		
	71	61		67		
		83	73		79	
			97			

II. FRACTIONS
$1 / 2$
$1 / 3$
$2 / 3$
$1 / 4$
$3 / 4$
$1 / 5$
$2 / 5$
$3 / 5$
/5
$1 / 6$
$5 / 6$
18
/8
$1 / 8$
$1 / 9$
$1 / 10$
$1 / 11$
$1 / 12$
$1 / 16$
$1 / 20$
$1 / 25$
$1 / 50$

DECIMALS

. 5
.$\overline{3}$
. $\overline{6}$
.25
.75
. 2
. 4
. 6
. 8
$.1 \overline{6}$
$.8 \overline{3}$
.125
. 375
. 625
.875
. $\overline{1}$
. 1
.$\overline{09}$
$.08 \overline{3}$
. 0625
. 05
. 04
. 02

PERCENTS

50 \%
$33 . \overline{3} \%$
$66 . \overline{6} \%$
25%
75%
20 \%
40 \%
60 \%
80 \%
$16 . \overline{6} \%$
$83 . \overline{3} \%$
12.5 \%
37.5%
62.5%
87.5%
$11 . \overline{1} \%$
10 \%
$9 . \overline{09} \%$
$8 . \overline{3} \%$
6.25%
5%
4%
2%
III. PERFECT SQUARES AND PERFECT CUBES

$1^{2}=1$	$2^{2}=4$	$3^{2}=9$	$4^{2}=16$	$5^{2}=25$
$6^{2}=36$	$7^{2}=49$	$8^{2}=64$	$9^{2}=81$	$10^{2}=100$
$11^{2}=121$	$12^{2}=144$	$13^{2}=169$	$14^{2}=196$	$15^{2}=225$
$16^{2}=256$	$17^{2}=289$	$18^{2}=324$	$19^{2}=361$	$20^{2}=400$
$21^{2}=441$	$22^{2}=484$	$23^{2}=529$	$24^{2}=576$	$25^{2}=625$
$1^{3}=1$	$2^{3}=8$	$3^{3}=27$	$4^{3}=64$	$5^{3}=125$
$6^{3}=216$	$7^{3}=343$	$8^{3}=512$	$9^{3}=729$	$10^{3}=1000$

IV. SQUARE ROOTS

$$
\begin{array}{lllll}
\sqrt{1}=1 & \sqrt{2} \approx 1.414 & \sqrt{3} \approx 1.732 & \sqrt{4}=2 & \sqrt{5} \approx 2.236 \\
\sqrt{6} \approx 2.449 & \sqrt{7} \approx 2.646 & \sqrt{8} \approx 2.828 & \sqrt{9}=3 & \sqrt{10} \approx 3.162
\end{array}
$$

V. FORMULAS

Perimeter:
Volume:

Triangle	$p=a+b+c$
Square	$p=4 s$
Rectangle	$p=2 l+2 w$
Circle (circumference)	$c=2 \pi r$
	$c=\pi d$

Cube	$V=s^{3}$
Rectangular Prism	$V=l w h$
Cylinder	$V=\pi r^{2} h$
Cone	$V=(1 / 3) \pi r^{2} h$
Sphere	$V=(4 / 3) \pi r^{3}$
Pyramid	$V=(1 / 3)$ (area of base) h

Area:
Rhombus
Square
$A=(1 / 2) d_{1} d_{2}$
Circle
$A=\pi r^{2}$
Rectangle
$A=s^{2}$
Triangle
$A=(1 / 2) b h$

Parallelogram
Trapezoid
$A=l w=b h$
Right Triangle
$A=(1 / 2) l_{1} l_{2}$
$A=b h$
$A=(1 / 2)\left(b_{1}+b_{2}\right) h$
Equilateral Triangle $A=(1 / 4) s^{2} \sqrt{3}$

Total Surface Area:
Cube

$$
T=6 s^{2}
$$

Rectangular Prism
$T=2 l w+2 l h+2 w h$
Cylinder
$T=2 \pi r^{2}+2 \pi r h$
Sphere
$T=4 \pi r^{2}$
Lateral Surface Area:
$\begin{array}{ll}\text { Rectangular Prism } & L=(2 l+2 w) h \\ \text { Cylinder } & L=2 \pi r h\end{array}$

Distance $=$ Rate \times Time
Slope of a Line with Endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right):$ slope $=m=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}$
Distance Formula: distance between two points or length of segment with endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ $D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Midpoint Formula: midpoint of a line segment given two endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Circles:
Length of an arc $=\left(\frac{x}{360}\right)(2 \pi r)$, where x is the measure of the central angle of the arc
Area of a sector $=\left(\frac{x}{360}\right)\left(\pi r^{2}\right)$, where x is the measure of the central angle of the sector

Combinations (number of groupings when the order of the items in the groups does not matter):
Number of combinations $=\frac{N!}{R!(N-R)!}$, where $N=\#$ of total items and $R=\#$ of items being chosen

Permutations (number of groupings when the order of the items in the groups matters):
Number of permutations $=\frac{N!}{(N-R)!}$, where $N=\#$ of total items and $R=\#$ of items being chosen
$\underline{\text { Length of a Diagonal of a Square }}=s \sqrt{2}$
Length of a Diagonal of a Cube $=s \sqrt{3}$
Length of a Diagonal of a Rectangular Solid $=\sqrt{x^{2}+y^{2}+z^{2}}$, with dimensions x, y and z
$\underline{\text { Number of Diagonals for a Convex Polygon with } N \text { Sides }}=\frac{N(N-3)}{2}$
$\underline{\text { Sum of the Measures of the Interior Angles of a Regular Polygon with } N \text { Sides }=(N-2) 180}$
Heron's Formula:
For any triangle with side lengths a, b and c, \quad Area $=\sqrt{s(s-a)(s-b)(s-c)}$, where $s=1 / 2(a+b+c)$

Pythagorean Theorem: (Can be used with all right triangles)
$a^{2}+b^{2}=c^{2}$, where a and b are the lengths of the legs and c is the length of the hypotenuse
Pythagorean Triples: Integer-length sides for right triangles form Pythagorean Triples - the largest number must be on the hypotenuse. Memorizing the bold triples will also lead to other triples that are multiples of the original.

$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{7}$	$\mathbf{2 4}$	$\mathbf{2 5}$
6	8	10	10	24	26	$\mathbf{8}$	$\mathbf{1 5}$	$\mathbf{1 7}$
9	12	15	15	36	39	$\mathbf{9}$	$\mathbf{4 0}$	$\mathbf{4 1}$

Special Right Triangles:

$$
45^{\circ}-45^{\circ}-90^{\circ}
$$

hypotenuse $=\sqrt{2}(\operatorname{leg})=a \sqrt{2}$
leg $=\frac{\text { hypotenuse }}{\sqrt{2}}=\frac{c}{\sqrt{2}}$

$\underline{30^{\circ}-60^{\circ}-90^{\circ}}$
hypotenuse $=2($ shorter leg $)=2 b$
longer leg $=\sqrt{3}($ shorter leg $)=b \sqrt{3}$
shorter leg $=\frac{\text { longer leg }}{\sqrt{3}}=\frac{\text { hypotenuse }}{2}$

Geometric Mean: $\frac{a}{x}=\frac{x}{b}$ therefore, $x^{2}=a b$ and $x=\sqrt{a b}$

$$
\text { Measure of vertex angle }=180-\frac{360}{n} \text {, where } n=\text { number of sides of the polygon }
$$

Ratio of Two Similar Figures: If the ratio of the measures of corresponding side lengths is $A: B$, then the ratio of the perimeters is $A: B$, the ratio of the areas is $A^{2}: B^{2}$ and the ratio of the volumes is $A^{3}: B^{3}$.

Difference of Two Squares: $a^{2}-b^{2}=(a-b)(a+b)$
Example: $12^{2}-9^{2}=(12-9)(12+9)=3 \cdot 21=63$

$$
144-81=63
$$

Determining the Greatest Common Factor (GCF): 5 Methods

1. Prime Factorization (Factor Tree) - Collect all common factors
2. Listing all Factors
3. Multiply the two numbers and divide by the Least Common Multiple (LCM)

Example: to find the GCF of 15 and 20, multiply $15 \times 20=300$,
then divide by the LCM, 60. The GCF is 5 .
4. Divide the smaller number into the larger number. If there is a remainder, divide the remainder into the divisor until there is no remainder left. The last divisor used is the GCF.

Example: 180 $\longdiv { 3 8 5 }$
$\underline{360}$
25
$2 5 \longdiv { 1 8 0 }$
$\frac{175}{5} \quad \frac{25}{0}$

5 is the GCF of 180 and 385
5. Single Method for finding both the GCF and LCM

Put both numbers in a lattice. On the left, put ANY divisor of the two numbers and put the quotients below the original numbers. Repeat until the quotients have no common factors except 1 (relatively prime). Draw a "boot" around the left-most column and the bottom row. Multiply the vertical divisors to get the GCF. Multiply the "boot" numbers (vertical divisors and last-row quotients) to get the LCM.

	$\mathbf{4 0}$	$\mathbf{1 4 0}$
2	20	70

	$\mathbf{4 0}$	$\mathbf{1 4 0}$
2	20	70
10		

	$\mathbf{4 0}$	$\mathbf{1 4 0}$
2	20	70
10	2	7

The GCF is $2 \times 10=20$ The LCM is
$2 \times 10 \times 2 \times 7=280$

VI. DEFINITIONS

Real Numbers: all rational and irrational numbers
Rational Numbers: numbers that can be written as a ratio of two integers
Irrational Numbers: non-repeating, non-terminating decimals; can't be written as a ratio of two integers (i.e. $\sqrt{7}, \pi$)

Integers: $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
Whole Numbers: $\{0,1,2,3, \ldots\}$
Natural Numbers: $\{1,2,3,4, \ldots\}$
Common Fraction: a fraction in lowest terms (Refer to "Forms of Answers" in the MATHCOUNTS
School Handbook for a complete definition.)

Equation of a Line:

Standard form: $A x+B y=C$ with slope $=-\frac{A}{B}$
Slope-intercept form: $y=m x+b$ with slope $=m$ and y-intercept $=b$
Regular Polygon: a convex polygon with all equal sides and all equal angles
Negative Exponents: $x^{-n}=\frac{1}{x^{n}}$ and $\frac{1}{x^{-n}}=x^{n}$

$\underline{\text { Mean }}=$ Arithmetic Mean $=$ Average
$\underline{\text { Mode }}=$ the number(s) occurring the most often; there may be more than one
$\underline{\text { Median }}=$ the middle number when written from least to greatest
If there is an even number of terms, the median is the average of the two middle terms.
$\underline{\text { Range }}=$ the difference between the greatest and least values
Measurements:
1 mile $=5280$ feet
1 square foot $=144$ square inches
1 square yard $=9$ square feet
1 cubic yard $=27$ cubic feet

VII. PATTERNS

Divisibility Rules:

Number is divisible by 2 : last digit is $0,2,4,6$ or 8
3: sum of digits is divisible by 3
4: two-digit number formed by the last two digits is divisible by 4
5: last digit is 0 or 5
6: number is divisible by both 2 and 3
8: three-digit number formed by the last 3 digits is divisible by 8
9: sum of digits is divisible by 9
10: last digit is 0

Sum of the First N Even Natural Numbers $=N^{2}+N=N(N+1)$
$\underline{\text { Sum of an Arithmetic Sequence of Integers: } \frac{N}{2} \times(\text { first term }+ \text { last term }) \text {, where } N=\text { amount of }}$ numbers/terms in the sequence

Find the digit in the units place of a particular power of a particular integer
Find the pattern of units digits: 7^{1} ends in 7
7^{2} ends in 9
(pattern repeats $\quad 7^{3}$ ends in 3 every 4 exponents) $\quad 7^{4}$ ends in 1
7^{5} ends in 7
Divide 4 into the given exponent and compare the remainder with the first four exponents.
(a remainder of 0 matches with the exponent of 4)
Example: What is the units digit of 7^{22} ?
$\mathbf{2 2} \div 4=5 \mathrm{r} .2$, so the units digit of 7^{22} is the same as the units digit of 7^{2}, which is 9 .
VIII. FACTORIALS (" n !" is read " n factorial")
$n!=(n) \times(n-1) \times(n-2) \times \ldots \times(2) \times(1) \quad$ Example: $5!=5 \times 4 \times 3 \times 2 \times 1=120$
$0!=1$
$1!=1$
$2!=2$
$3!=6$
Notice $\frac{6!}{4!}=\frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1}=30$
$4!=24$
$5!=120$
$6!=720$
$7!=5040$

IX. PASCAL'S TRIANGLE

Pascal's Triangle Used for Probability:
Remember that the first row is row zero (0). Row 4 is 14641 . This can be used to determine the different outcomes when flipping four coins.

$\mathbf{1}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{1}$
way to get	ways to get	ways to get	ways to get	way to get
4 heads 0 tails	3 heads 1 tail	2 heads 2 tails	1 head 3 tails	0 heads 4 tails

For the Expansion of $(a+b)^{n}$, use numbers in Pascal's Triangle as coefficients.

$$
\begin{aligned}
& 1 \quad(a+b)^{0}=1 \\
& 1 \quad 1 \quad(a+b)^{1}=a+b \\
& \begin{array}{lll}
1 & 2 & 1
\end{array}(a+b)^{2}=a^{2}+2 a b+b^{2} \\
& \begin{array}{lllll}
1 & 3 & 3 & 1 & (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{array} \\
& \begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array} \\
& \begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array} \\
& \begin{array}{l}
(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
\end{array}
\end{aligned}
$$

For 2^{n}, add all the numbers in the $n^{\text {th }}$ row. (Remember the triangle starts with row 0 .)

1	$2^{0}=1$
11	$2^{1}=1+1=2$
121	$2^{2}=1+2+1=4$
$\begin{array}{lllll}1 & 3 & 3 & 1\end{array}$	$2^{3}=1+3+3+1=8$
$\begin{array}{llllll}1 & 4 & 6 & 4 & 1\end{array}$	$2^{4}=1+4+6+4+1=16$
$\begin{array}{llllll}1 & 5 & 10 & 10 & 5 & 1\end{array}$	$2^{5}=1+5+10+10+5+1=32$

X. SQUARING A NUMBER WITH A UNITS DIGIT OF 5

$(n 5)^{2}=\underline{n \times(n+1)} \underline{2} \underline{5}$, where n represents the block of digits before the units digit of 5 Examples:

$$
\begin{aligned}
& (35)^{2}=\underline{3 \times(3+1)} \underline{2} \underline{5} \\
& =\underline{3 \times(4)} 2 \underline{5} \\
& =\underline{12} \underline{2} \underline{5} \\
& =1,225 \\
& (125)^{2}=\underline{12 \times(12+1)} \underline{2} \underline{5} \\
& =\underline{12 \times(13)} \underline{2} \underline{5} \\
& =\underline{156} \underline{2} \underline{5} \\
& =15,625
\end{aligned}
$$

XI. BASES
 Base $10=$ decimal - on7y uses digits $0-9$
 Base 2 = binary - only uses digits $0-1$
 Base $8=$ octal - only uses digits $0-7$

Base $16=$ hexadecimal - only uses digits $0-9, \mathrm{~A}-\mathrm{F}$ (where $\mathrm{A}=10, \mathrm{~B}=11, \ldots, \mathrm{~F}=15$)
Changing from Base 10 to Another Base:
What is the base 2 representation of 125 (or " 125 base 10 " or " 125_{10} ")?
We know $125=1\left(10^{2}\right)+2\left(10^{1}\right)+5\left(10^{0}\right)=100+20+5$, but what is it equal to in base 2 ?
$125_{10}=?\left(2^{n}\right)+?\left(2^{n-1}\right)+\ldots+?\left(2^{0}\right)$
The largest power of 2 in 125 is $64=2^{6}$, so we now know our base 2 number will be:
$?\left(2^{6}\right)+?\left(2^{5}\right)+?\left(2^{4}\right)+?\left(2^{3}\right)+?\left(2^{2}\right)+?\left(2^{1}\right)+?\left(2^{0}\right)$ and it will have 7 digits of 1 's and/or 0 's.
Since there is one 64 , we have: $\mathbf{1}\left(2^{6}\right)+?\left(2^{5}\right)+?\left(2^{4}\right)+?\left(2^{3}\right)+?\left(2^{2}\right)+?\left(2^{1}\right)+?\left(2^{0}\right)$
We now have $125-64=61$ left over, which is one $32=2^{5}$ and 29 left over, so we have:
$\mathbf{1}\left(2^{6}\right)+\mathbf{1}\left(2^{5}\right)+?\left(2^{4}\right)+?\left(2^{3}\right)+?\left(2^{2}\right)+?\left(2^{1}\right)+?\left(2^{0}\right)$
In the left-over 29 , there is one $16=2^{4}$, with 13 left over, so we have:
$\mathbf{1}\left(2^{6}\right)+\mathbf{1}\left(2^{5}\right)+\mathbf{1}\left(2^{4}\right)+?\left(2^{3}\right)+?\left(2^{2}\right)+?\left(2^{1}\right)+?\left(2^{0}\right)$
In the left-over 13, there is one $8=2^{3}$, with 5 left over, so we have:
$\mathbf{1}\left(2^{6}\right)+\mathbf{1}\left(2^{5}\right)+\mathbf{1}\left(2^{4}\right)+\mathbf{1}\left(2^{3}\right)+?\left(2^{2}\right)+?\left(2^{1}\right)+?\left(2^{0}\right)$
In the left-over 5 , there is one $4=2^{2}$, with 1 left over, so we have:
$\mathbf{1}\left(2^{6}\right)+\mathbf{1}\left(2^{5}\right)+\mathbf{1}\left(2^{4}\right)+\mathbf{1}\left(2^{3}\right)+\mathbf{1}\left(2^{2}\right)+?\left(2^{1}\right)+?\left(2^{0}\right)$
In the left-over 1 , there is no $2=2^{1}$, so we still have 1 left over, and our expression is:
$\mathbf{1}\left(2^{6}\right)+\mathbf{1}\left(2^{5}\right)+\mathbf{1}\left(2^{4}\right)+\mathbf{1}\left(2^{3}\right)+\mathbf{1}\left(2^{2}\right)+\mathbf{0}\left(2^{1}\right)+?\left(2^{0}\right)$
The left-over 1 is one 2^{0}, so we finally have:
$\mathbf{1}\left(2^{6}\right)+\mathbf{1}\left(2^{5}\right)+\mathbf{1}\left(2^{4}\right)+\mathbf{1}\left(2^{3}\right)+\mathbf{1}\left(2^{2}\right)+\mathbf{0}\left(2^{1}\right)+\mathbf{1}\left(2^{0}\right)=1111101_{2}$

Now try What is the base 3 representation of 105?
The largest power of 3 in 105 is $81=3^{4}$, so we now know our base 3 number will be:
$?\left(3^{4}\right)+?\left(3^{3}\right)+?\left(3^{2}\right)+?\left(3^{1}\right)+?\left(3^{0}\right)$ and will have 5 digits of 2 's, 1 's, and/or 0 's.
Since there is one 81 , we have: $1\left(3^{4}\right)+?\left(3^{3}\right)+?\left(3^{2}\right)+?\left(3^{1}\right)+?\left(3^{0}\right)$
In the left-over $105-81=24$, there is no $27=3^{3}$, so we still have 24 and the expression:
$\mathbf{1}\left(3^{4}\right)+\mathbf{0}\left(3^{3}\right)+?\left(3^{2}\right)+?\left(3^{1}\right)+?\left(3^{0}\right)$
In the left-over 24 , there are two 9 's (or 3^{2} 's), with 6 left over, so we have:
$\mathbf{1}\left(3^{4}\right)+\mathbf{0}\left(3^{3}\right)+\mathbf{2}\left(3^{2}\right)+?\left(3^{1}\right)+?\left(3^{0}\right)$
In the left-over 6 , there are two 3 's (or 3^{1} 's), with 0 left over, so we have:
$\mathbf{1}\left(3^{4}\right)+\mathbf{0}\left(3^{3}\right)+\mathbf{2}\left(3^{2}\right)+2\left(3^{1}\right)+?\left(3^{0}\right)$
Since there is nothing left over, we have no 1 's (or 3^{0} 's), so our final expression is: $\mathbf{1}\left(3^{4}\right)+\mathbf{0}\left(3^{3}\right)+\mathbf{2}\left(3^{2}\right)+\mathbf{2}\left(3^{1}\right)+\mathbf{0}\left(3^{0}\right)=10220_{3}$

The following is another fun algorithm for converting base 10 numbers to other bases:

Notice: Everything in bold shows the first division operation. The first remainder will be the last digit in the base n representation, and the quotient is then divided again by the desired base. The process is repeated until a quotient is reached that is less than the desired base. At that time, the final quotient and remainders are read downward.

XII. FACTORS

Determining the Number of Factors of a Number: First find the prime factorization (include the 1 if a factor is to the first power). Increase each exponent by 1 and multiply these new numbers together.

Example: How many factors does 300 have?
The prime factorization of 300 is $2^{2} \times 3^{1} \times 5^{2}$. Increase each of the exponents by 1 and multiply these new values: $(2+1) \times(1+1) \times(2+1)=3 \times 2 \times 3=18$. So 300 has 18 factors.

Finding the Sum of the Factors of a Number:

Example: What is the sum of the factors of 10,500 ?
(From the prime factorization $2^{2} \times 3^{1} \times 5^{3} \times 7^{1}$, we know 10,500 has $3 \times 2 \times 4 \times 2=48$ factors.)
The sum of these 48 factors can be calculated from the prime factorization, too:
$\left(2^{0}+2^{1}+2^{2}\right)\left(3^{0}+3^{1}\right)\left(5^{0}+5^{1}+5^{2}+5^{3}\right)\left(7^{0}+7^{1}\right)=7 \times 4 \times 156 \times 8=34,944$.

